

An Overview of Risks, Background, and Other Challenges at the Lower Duwamish Waterway Superfund Site

K Godtfredsen, D Hotchkiss, S Fox, D Schuchardt, J Goldberg, J Stern, D Williston, L McCrone, M Johns, and T Deshler

Overview

- Location and estuarine setting
- Regulatory history and current status
- Risk drivers for human health
- Risk drivers for ecological receptors
- Risk-based threshold concentrations (RBTCs)
- Comparison of RBTCs with background
- Challenges

Timeline

EPA and Department of Ecology Co-Lead

Program	Human Health Excess Cancer Risk Target	Background Definitions	Benthic Invertebrates
CERCLA	10 ⁻⁴ to 10 ⁻⁶ (cumulative)	Anthropogenic	Risk assessment
Washington State Model Toxics Control Act (MTCA) and Sediment Management Standards (SMS)	10 ⁻⁶ (individual chemicals) 10 ⁻⁵ (cumulative)	Natural and area	Promulgated numeric chemical criteria with toxicity test override

Risk Drivers for Human Health

- Human health scenarios
 - Seafood consumption
 - Direct sediment contact
 - Beach play
 - Clamming
 - Netfishing
- Risk-driver chemicals
 - Polychlorinated biphenyls (PCBs)
 - Dioxins/furans
 - Carcinogenic polycyclic aromatic hydrocarbons (cPAHs)
 - Arsenic

Human Health Seafood Consumption

Scenario	Key Assumptions	Excess Cancer Risk Estimate	Non-Cancer Hazard Indices
Adult Tribal RME	97.5 g/day for 70 yrs	3 x 10 ⁻³	0.4 to 41
Child Tribal RME	39 g/day for 6 yrs	7 x 10 ⁻⁴	0.5 to 89
Asian and Pacific Islander RME	51.5 g/day for 30 yrs	1 x 10 ⁻³	0.2 to 30
One meal per month (informational)	7.5 g/day for 30 yrs	3 x 10 ⁻⁵ to 2 x 10 ⁻⁴	0.006 to 10

RME – reasonable maximum exposure

Contribution of risk driver chemicals

Direct Sediment Contact

Scenario	Key Assumptions	Updated Excess Cancer Risk Estimates	Updated Non-Cancer Hazard Quotients
Beach play RME	65 days/yr for 6 yrs	4 x 10 ⁻⁶ to 6 x 10 ⁻⁴	< 1 (except one area with HQ of 187 for PCBs)
Tribal clamming RME	120 days/yr for 64 yrs	8 x 10 ⁻⁵	< 1
Netfishing RME	119 days/yr for 44 yrs	1 x 10 ⁻⁵	< 1

Risk Drivers for Ecological Receptors

- Risks assessed for:
 - Birds (heron, osprey, sandpiper)
 - Mammals (otter, seal)
 - Fish (sculpin, sole, juvenile salmon)
 - Benthic invertebrates (including gastropods and crabs)
- Risk-driver chemicals
 - PCBs (otter) lowest-observed-apparent-effects level (LOAEL)-based hazard quotient (HQ) of 2.9
 - 41 chemicals for benthic invertebrates

Risk-Based Threshold Concentrations

Risk- Driver Chemical	Tissue RBTCs – Seafood Ingestion	Sediment RBTCs – Seafood Ingestion	Sediment RBTCs – Direct Sediment Contact	Sediment RBTCs – River Otter
PCBs	X	X	X	X
Arsenic	X	Insufficient relationship	X	Not a risk driver
cPAHs	X	Insufficient relationship	X	Not a risk driver
Dioxins and furans	Risks assumed to be unacceptable	Risks assumed to be unacceptable	X	Not a risk driver

Risk-Based Threshold Concentrations of PCBs in Tissue (µg/kg ww)

Background and Risk-Based Threshold Concentrations for PCBs in Sediment (µg/kg dw)

Background and Risk-Based Threshold Concentrations for Arsenic in Sediment (mg/kg dw)

Wind Ward

Background and Risk-Based Threshold Concentrations for cPAH TEQ in Sediment (µg/kg dw)

Background and Risk-Based Threshold Concentrations for Dioxin/Furan TEQ in Sediment (ng/kg dw)

Take-home messages

- Urban waterways present many challenges under CERCLA, especially when the site is a co-lead site with the state.
- Key challenges include:
 - Establishing background
 - Assessing sources and recovery and minimizing the potential for recontamination
 - Risk management and communication

Questions?

